Class numbers in cyclotomic \mathbb{Z}_p -extensions

John Miller

Rutgers University

ANTS XI - Rump Session August 10, 2014

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let \mathbb{B}_{p^n} denote the *n*th layer of the cyclotomic \mathbb{Z}_p -extension of the rationals, i.e. the unique real subfield of the cyclotomic field $\mathbb{Q}(\zeta_{p^{n+2}})$ that has degree p^n over \mathbb{Q} .

 $\mathbb{B}_{p^{\infty}} = \bigcup_{n \ge 1} \mathbb{B}_{p^n}$ is called the **cyclotomic** \mathbb{Z}_p -extension of \mathbb{Q} . Its Galois group over \mathbb{Q} is isomorphic to the *p*-adic integers \mathbb{Z}_p .

Hence the name.

Let h_{p^n} denote the class number of \mathbb{B}_{p^n} .

A Big Question: Is h_{p^n} ever not equal to 1? Does it have any prime divisors?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Let's consider the evidence...

The Evidence: no prime divisors of h_{p^n} so far...

(Weber, 1886) h_{2^n} odd for all n.

(Fukuda-Komatsu, 2011) h_{2^n} has no prime divisors less than 10^9 , for all *n*.

(Fukuda-Komatsu-Morisawa, 2014) h_{3^n} has no prime divisors less than 10^9 , for all *n*.

(Iwasawa, 1956) h_{p^n} not divisible by p, for all n.

(Ichimura-Nakajima, 2010) h_{p^n} is odd, for all *n* and primes p < 500.

The few h_{p^n} that are known all have class number 1.

$\mathbb{B}_{p,n}$	Class number	
\mathbb{B}_{2^6}	1	M. (2013)
\mathbb{B}_{2^7}	1 (under GRH)	M. (2013)
\mathbb{B}_{3^3}	1	Masley (1978)
\mathbb{B}_{3^4}	1 (under GRH)	van der Linden (1982)
\mathbb{B}_{5^2}	1	M. (2014)
\mathbb{B}_{7^1}	1	Bauer (1969)
\mathbb{B}_{11^1}	1	M. (2014)
\mathbb{B}_{13^1}	1	M. (2014)
\mathbb{B}_{17^1}	1	M. (2014)
\mathbb{B}_{19^1}	1	M. (2014)
\mathbb{B}_{23^1}	1 (under GRH)	Pari via SageMathCloud
\mathbb{B}_{29^1}	1 (under GRH)	Pari via SageMathCloud
\mathbb{B}_{31^1}	1 (under GRH)	Pari via SageMathCloud

What do the Cohen-Lenstra heuristics suggest?

$$P_T = \prod_{p \text{ prime } q} \prod_{\substack{q \neq p}} \prod_{j \ge 2} \prod_{k \ge 2} (1 - q^{-fk})^{\phi(p^j)/f}$$

is the "probability" (in the Bayesian sense) that $h_{p^n} = 1$ for all p and n. Here f is the order of q modulo p^j .

We can think of

$$-\log P_T = -\sum_{p ext{ prime } q} \sum_{\substack{q ext{ prime } j \geq 2 \ k \geq 2}} \sum_{k \geq 2} (1 - q^{-fk})^{\phi(p^j)/f}$$

(日) (日) (日) (日) (日) (日) (日) (日)

as the number of expected exceptions to $h_{p^n} = h_{p^{n-1}}$.

What about that quadruple sum?

Buhler, Pomerance and Robertson (2003) proved that the sum is finite,

$$-\log P_{\mathcal{T}} = -\sum_{p \text{ prime}} \sum_{\substack{q \text{ prime} \\ q \neq p}} \sum_{j \ge 2} \sum_{k \ge 2} (1 - q^{-fk})^{\phi(p^j)/f} < \infty,$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

and conjectured that the number of expected exceptions to $h_{p^n} = h_{p^{n-1}}$ is finite.

What's new?

Using an explicit sieve result of Siebert (1976) and refining our sum by excluding terms the correspond to primes that we already know do now divide h_{p^n} , we can prove that

$$-\log P_{T} = -\sum_{\substack{p \text{ prime } q \text{ prime } j=1 \\ excluding \text{ terms where the} \\ q-part \text{ of the class group} \\ \text{ is known to be trivial}} \sum_{\substack{k \ge 2 \\ f}} \frac{\phi(p^{j})}{f} \log(1-q^{-fk}) < 0.33$$

and so

$$P_T > 72\%$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Conjecture

This suggests the following conjecture:

For any prime p and positive integer n,

$$h_{p^{n}} = 1.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?